首页 > 实用文 > 教学设计

四年级下册数学教学设计

时间:2024-10-21 15:51:06
四年级下册数学教学设计15篇

四年级下册数学教学设计15篇

作为一名教职工,常常要写一份优秀的教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。那么大家知道规范的教学设计是怎么写的吗?下面是小编为大家收集的四年级下册数学教学设计,欢迎大家分享。

四年级下册数学教学设计1

课题:比大小(二)

内容:小数的性质

课时:1

教学准备:

教学目标:1、通过“在方格纸上涂一涂,比较两个小数的大小”的活动,经历用几何模型研究小数的过程。

2、用直观的方式体会小数的末尾添上0或去掉0,小数的大小不变的规律。

3、在寻找小数大小的比较方法中,培养数感,获取数学学习方法。

基本教学过程:

一、 一、创设问题情境

1、比较大小。1.26( )2.03 0.23( )0.31

2、0.2( )0.20

二、自主探究,创建数学模型

1、思考一下,0.2和0.20谁大?你是怎样想的?

2、我们一起验证一下,在图上涂一涂,再来比一比。学生在书上涂一涂,比一比,再说一说。

3、0.2和0.20怎么会相等呢?这是不是一种巧合?

4、在下面两幅图中涂出相等的两部分,并写出相应的分数和小数。

在小组内交流你的涂法和想法。你发现了什么?

三、巩固与应用

1、第10页试一试1、2。

2、第11页练一练1。

3、第2、3题。

4、阅读。《你知道吗?》

四、总结。

这节课你发现了什么?

教学反思:学生通过图一图、比一比,发现小数的末尾添上0或去掉0,小数的大小不变这一规律。并能熟练的应用这一规律。

四年级下册数学教学设计2

【教学内容】教科书103-104页内容及相关练习。

【教材分析】

“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。解决这类问题的方法包括:列表法、假设法、方程法等。教材把这一问题安排在四年级,学生还没有学过方程,因此这里主要引导学生通过猜测、列表、假设等方法来解决问题,培养学生猜测、有序思考及逻辑推理的能力,体会假设法的一般性。在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。

【学情分析】

“鸡兔同笼”问题是我国古代著名数学趣题,容易激发学生的探究兴趣。“列表法”是学生比较容易接受的,也就是通过有序猜测和计算得出结论,“假设法”对学生来说比较陌生,教学中要抓住其特点,讲解算理,让学生逐步掌握,根据具体问题引导学生分析理解,拓宽学生思维。

【教学建议】

1、教学中要注意渗透化繁为简的思想。

2、引导学生探索解决问题的策略和方法。

3、介绍有关鸡兔同笼问题的“趣解”,既激发学习的兴趣,又可以拓宽学生的思路。

【教学目标】

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、经历自主探究解决问题的过程,了解列表法、假设法等解决问题的方法,在解决问题的过程中培养逻辑推理能力,增强应用意识和实践能力。

3、了解“鸡兔同笼”问题解决的多种有趣方法,体验问题解决方法多样化。

【教学重点】经历自主探究解决问题的过程,掌握运用列表法、假设法解决“鸡兔同笼”问题。

【教学难点】理解掌握假设法,能运用假设法解决数学问题。

【教学过程】

一、情境导入。

今天老师想给同学们介绍一部1500年前的数学名著《孙子算经》,你们想了解吗?里面记载着许多有趣的数学名题,其中有这样一道题,请看屏幕:(课件出示以下情境图)

师:你能说说这道题是什么意思吗?(说明:雉指鸡)让学生说说题意,然后出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?这就是我们今天要研究的历史趣题“鸡兔同笼”问题。(板书课题)

有的同学已经在计算了,说说看鸡有多少只?兔有多少只?

【设计意图】结合课件呈现的情境图谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,同时在学生猜测得不到正确结果的情况下,激发学生的探究兴趣,为下一环节引导学生经历“化繁为简”的解题策略做好铺垫。

二、新知探究。

(一)感受化繁为简的必要性。

刚才大家猜了好几组数据,但是我们验证后发现都不对,为什么这么多人都没有猜对呢?(数太大了)你们觉得什么情况下能够猜对?(数小一些)

那咱们就换一道数小一些的。(课件出示例1)

笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26只脚。鸡和兔各有几只?

(二)自主尝试解决问题。

我们一起来看看在同一个笼子里的鸡和兔给我们带来了哪些数学信息?

找到题中信息:①鸡和兔共8只。②鸡和兔共有26条腿。 ③鸡有2条腿。 ④兔有4条腿。

在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?

怎样才能确定猜测的结果对不对?(把鸡的腿和兔的腿加起来看是不是等于(把鸡的腿和兔的腿加起来看等不等于26)

这回给你们一点时间,把你猜测的数据在练习本上列个表,算一算,想一想:你算的对吗?(出示表格)

这回给你们一点时间,把你猜测的数据在练习本上算一算,想一想:你算的对吗?

(三)交流体会,掌握问题解决策略。

1、经历列表法的形成过程。

(1)经过同学们的研究,现在知道鸡和兔各有几只?

都谁和他的结果一样?你们有把握这次猜对了吗?怎么验证一下?

(2)说说你是怎样得出正确答案的?(引导学生说说解决问题的思路)

预设学生思路:

●从鸡8只,兔0只开始推算。

●从鸡0只,兔8只开始推算。

前两种情况可能做了充分预习,按照一定的顺序,列举出了所有情况,或者到得到正确答案为止。对这种有序思考的方法要给予肯定。

●直接猜出鸡有3只,兔有5只,验证后发现脚数正好是26只。

这种情况属于正好一下猜对了,教师提示不一定每次都能够猜得这么准。

●从鸡有4只,兔有4只开始推算。

这种情况猜测的次数比较少,对于数据比较大的时候适用。

●有的同学还可能发现了每增加一只兔,减少一只鸡,脚就增加2只,这样就可以一下子算出需要增加几只兔,直接找到正确答案。这正是假设法的 ……此处隐藏15317个字……烙法

1、明确烙一张饼的时间。

师:想一想,如果烙一张饼,需要多少时间?(生:6分钟)

为什么是6分钟?(生答)

师:为了交流方便,老师用流程图把刚才这位同学说的烙饼过程记录下来。

板书:一张: 正 反①②③

3 3 6分

2、研究2张饼的最优方案

师:想一想:如果烙两张饼,怎么烙?有几种可能?

生:12分钟

师:你是怎么烙的?(生答,师板书)

板书:两张:①正 ①反 ②正 ②反

3 3 3 3 12分

师:还有不同意见吗?生:6分钟。

师:你是怎么烙的?(生答)师:你能来给大家演示一下吗?(生演示,师板书)

两张:①正②正 ①反②反

3 3 6分

师:孩子们,现在烙两张饼出现了两种不同的答案,哪种烙法最快?那为什么第一种烙法多用了6分钟?

师:也就是说本来可以两张饼放在一起烙,而第一种每次只烙了一张,浪费了空间,也就浪费了时间,所以多用了6分钟。现在如果要尽快的把饼烙熟,你会选择哪种烙法?(生答)我们给第二种烙法取一个名字,就叫两饼同烙。(板书)

(三)动手操作,探究3张饼的最优烙法

师:孩子们,请看大屏幕,现在妈妈要烙几张饼。(3张)看看小精灵提的什么问题,谁来读一读?(生读)那怎样才能尽快吃上饼呢? (生答)

师:说得真好。下面我们就一起来动手操作一下,看看怎样才能把3张饼尽快的烙熟,在动手之前,请看清要求。课件出示数学信息,探究要求。

师:请小组长拿出3张圆片,就当3张饼,小组合作,现在开始。(生摆,师巡视)

师:同学们,你们的饼烙熟了吗?哪个小组来汇报一下,你们烙3张饼用了多少时间?(生:12分钟)

说说你是怎么烙的?(生说,师板书)

3张 ①正②正 ①反②反 ③正 ③ 反 12分

师:还有不同意见吗?(生:9分钟)请你来说说是怎么烙的?(生边说边演示,师板书)

3张 : ①正②正 ①反③正 ②反③ 反 9分

师:同学们,请同学比较这两种不同的烙法,为什么都是烙3个饼一种需要4次,另一种需要3次?

引导归纳:常规的烙法,先把两个饼放进去,正反面烙完后,再烙第三个。第三个饼的两面得一面一面来,浪费了其中一个位置。经过合理安排,烙饼的时候尽可能使锅里有两张饼在那里一起烙。这样就不会浪费时间,最省时间。也就是说我们在平时解决问题时,不同的问题要用不同的方法来解决,它的效果是不一样的。像这种轮流交换着烙确实快。这个烙法帮我们解决了数学难题,你能给她取个名字吗?(交替烙、轮流烙)板书:交替烙

同学们,不管做什么事情,事先作好合理安排,这样就能节约时间,提高效率。所以,生活中我们要合理安排时间。

三、总结方法,探究规律

师:接下去要研究4个饼,还是这几个条件,不过要求提高了,你能不能不动手摆就知道怎么烙最节省时间?先静静的想一下,怎样讲解让大家能听明白?实在想不出来的只好借助学具帮忙帮忙。

1、反馈烙4个饼的方法。

师:如果烙4个饼,怎么烙?(生答)师板4分成2个2个。能不能说得更简单一些?你可以说2个2个烙。最少花几分钟?如果老师请一个同学上来烙一烙,我们帮她数烙饼的次数,就会发现4个饼最少烙几次?

2、反馈烙5个饼

师:如果烙5个饼,怎么烙?你能不能马上说出烙5个饼最少烙几次吗?最少花几分钟?(生答)

烙6、7、8、9、10个饼出示课件

师:请你们仔细观察大屏幕上的表格,如果要烙6、7、8、9、10个饼,分别最少要烙几次,需要多长时间?(生答)

师:请仔细观察这个表格,你发现了什么?

得出:最短的总时间=烙饼的次数×烙每一面饼时间 (1除外)

烙饼的次数=烙饼的个数(1除外)

师:找着了规律解决问题就容易多了,接下来我们运用这条公式来解决一个问题。如:如果要给我们班的每一位同学都烙一个饼,最少需要几次?最少需要几分钟?

所以,在生活节奏如此之快的社会里,我们更应该合理安排时间,去做更多的事。

四、结合生活、实践应用:

五、课堂总结

师:学了今天这节课,你想说什么?

师小结:老师也希望大家能够运用我们今天所学的知识,合理地安排好自己的时间,在以后的学习和生活中提高效率,做一个珍惜时间的人。

教学反思

数学广角中的《烙饼问题》, 其教学目标主要是使学生通过简单的实例,初步体会运筹思想在解决实际问题中的应用,认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识,培养学生解决问题的能力。

“烙饼”是一节渗透统筹优化思想的数学课,它通过简单的优化问题渗透简单的优化思想。在教学设计和教学过程中,我以“烙饼”为主题,以数学思想方法的学习为主线,围绕“怎样烙饼,才能尽快吃上饼?”展开教学,设计了烙1张、2张、3张----单张,双张饼的探究过程。以烙3张饼作为教学突破点,形成从多种方案中寻找最佳方案的意识,为学生提供独立思考、动手操作、合作探究、展示交流的时间和空间。学生利用手中小圆片代替饼,经历了从提出数学问题——解决数学问题——发现数学规律——建构数学模型的过程。感觉效果不错。

重点:优化的思想——“同时”“节省时间”

小学生关于“烙饼”并无过多的生活经验,大多数都局限于“一张一张地烙”。因此,在教学中我借助所给的条件“一口平底锅内可以放两张饼”,让学生进行比较,明白“同时烙两张”会“节省时间”,从而渗透“优化的思想”。同时也为后面探究“三张饼”“四张饼”……的“最优方案”打好基础,使学生“保证每次都能烙两张饼”。

难点:规律的得出——“饼的张数×烙一张饼的时间=烙饼所需最少的时间”

突破这个难点时,我把“力气” 都使在“烙三张饼”的问题上。确实,在让学生认识到“同时烙两张饼可以节省时间”后,三张饼的问题是教学难点的“突破口”。在此,我给学生提供充分的时间和空间,鼓励学生借助手中学具试一试,探究“烙三张饼最少用多长时间”。之后组织学生交流汇报,教师相机引导,使学生认识到“保证锅内每次都能烙两张饼”才是最优方案,所用时间“9分钟”才最少。

“两张饼”“三张饼”的问题做为重点,让学生弄清楚后,在后面的探究中,学生自然会认识到“张数为双时,两张两张的烙”“张数为单时,先两张两张烙,剩下的三张同时烙”,那么烙再多张数的饼学生也不再会有问题。同时,根据烙2、3、4……张饼所用的时间,学生很快会得出“饼的张数×烙一张饼的时间=烙饼所需最少的时间”的规律,所有的问题迎刃而解。

数学广角给学生提供了一个亲近生活的机会,一个体验生活的平台。但因为大多数学生缺少生活经验,所以学起来比较难。我们老师应发掘更多的生活数学问题让学生在实际生活中去解决。

《四年级下册数学教学设计15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式